从80386开始,cpu有三种工作方式:实模式,保护模式和虚拟8086模式。只有在刚刚启动的时候是real-mode,等到linux操作系统运行起来以后就运行在保护模式。 实模式只能访问地址在1M以下的内存称为常规内存,我们把地址在1M 以上的内存称为扩展内存。 在保护模式下,全部32条地址线有效,可寻址高达4G字节的物理地址空间; 扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器提供了硬件支持; 支持多任务,能够快速地进行任务切换和保护任务环境; 4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离; 支持虚拟8086方式,便于执行8086程序。
一直以来,都搞不清楚这几个概念。在网上搜了一下,把它晒上,不会再忘记! 有其它的内容,请看到的朋友请补充。
从80386开始,cpu有三种工作方式:实模式,保护模式和虚拟8086模式。只有在刚刚启动的时候是real-mode,等到linux操作系统运行起来以后就运行在保护模式。实模式只能访问地址在1M以下的内存称为常规内存,我们把地址在1M 以上的内存称为扩展内存。在保护模式下,全部32条地址线有效,可寻址高达4G字节的物理地址空间; 扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器提供了硬件支持; 支持多任务,能够快速地进行任务切换和保护任务环境; 4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离; 支持虚拟8086方式,便于执行8086程序。
虚拟8086模式是运行在保护模式中的实模式,为了在32位保护模式下执行纯16位程序。它不是一个真正的CPU模式,还属于保护模式。
保护模式同实模式的根本区别是进程内存受保护与否。可寻址空间的区别只是这一原因的果。实模式将整个物理内存看成分段的区域,程序代码和数据位于不同区域,系统程序和用户程序没有区别对待,而且每一个指针都是指向"实在"的物理地址。这样一来,用户程序的一个指针如果指向了系统程序区域或其他用户程序区域,并改变了值,那么对于这个被修改的系统程序或用户程序,其后果就很可能是灾难性的。为了克服这种低劣的内存管理方式,处理器厂商开发出保护模式。这样,物理内存地址不能直接被程序访问,程序内部的地址(虚拟地址)要由操作系统转化为物理地址去访问,程序对此一无所知。
至此,进程(这时我们可以称程序为进程了)有了严格的边界,任何其他进程根本没有办法访问不属于自己的物理内存区域,甚至在自己的虚拟地址范围内也不是可以任意访问的,因为有一些虚拟区域已经被放进一些公共系统运行库。这些区域也不能随便修改,若修改就会有: SIGSEGV(linux 段错误);非法内存访问对话框(windows 对话框)。
CPU启动环境为16位实模式,之后可以切换到保护模式。但从保护模式无法切换回实模式 事实上,现在的64位奔腾4处理器,拥有三种基本模式和一种扩展模式, 基本模式: 保护模式:纯32位保护执行环境。 实模式:纯16位无保护执行环境。 系统管理模式:当SMI引脚为有效进入系统管理模式,首先保存当前的CPU上下文。它有独立的地址空间,用来执行电源管理或系统安全方面的指令。 扩展模式: IA-32e模式: 64位操作系统运行在该模式。该模式有两种子模式: 1)兼容模式:该模式下,64位操作系统运行在32位兼容环境,能正常运行16,32位应用程序就像基本的保护模式一样, 访问32位地址空间,但不能运行纯16位实模式程序(就是不能运行虚拟86模式程序了)。 2)64位模式:在该模式下,处理器完全执行64位指令,使用64位地址空间和64操作数,运行16,32位程序必须切换到兼容模式。 IA-32e子模式的切换完全基于代码段寄存器。这样一来,运行在IA-32e模式中(64位)的OS完全可以无缝的运行所有16,32,64为应用程序, 通过设置32位后的CS。
一。x86实模式介绍
x86体系的处理器刚开始时只有20根地址线,寻址寄存器是16位。我们知道16位的寄存器可以访问64K的地址空间,如果程序要想访问大于64K的内存,就需要把内存分段,每段64K,用段地址+偏移量的方式来访问,这样使20根地址线全用上,最大的寻址空间就可以到1M字节,这在当时已经是非常大的内存空间了。
二。实模式的问题与保护模式的出现
事实上,实模式将整个物理内存看成分段的区域,程序代码和数据位于不同区域,系统程序和用户程序并没有区别对待,而且每一个指针都是指向实际的物理地址。这样一来,用户程序的一个指针如果指向了系统程序区域或其他用户程序区域,并修改了内容,那么对于这个被修改的系统程序或用户程序,其后果就很可能是灾难性的。再者,随着软件的发展,1M的寻址空间已经远远不能满足实际的需求了。最后,对处理器多任务支持需求也日益紧迫,所有这些都促使新技术的出现。
为了克服实模式下的内存非法访问问题,并满足飞速发展的内存寻址和多任务需求,处理器厂商开发出保护模式。在保护模式中,除了内存寻址空间大大提高;提供了硬件对多任务的支持;物理内存地址也不能直接被程序访问,程序内部的地址(虚拟地址)要由操作系统转化为物理地址去访问,程序对此一无所知。至此,进程(程序的运行态)有了严格的边界,任何其他进程根本没有办法访问不属于自己的物理内存区域,甚至在自己的虚拟地址范围内也不是可以任意访问的,因为有一些虚拟区域已经被放进一些公共系统运行库。这些区域也不能随便修改,若修改就会有出现linux中的段错误,或Windows中的非法内存访问对话框。
三。386以上处理器的特点
386处理器有三种工作方式:实模式、保护模式和虚拟8086模式。
在保护方式下,全部32条地址线有效,可寻址高达4G字节的物理地址空间;扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器提供了硬件支持;支持多任务,能够快速地进行任务切换和保护任务环境;4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离;支持虚拟8086方式,便于执行8086程序。
四。保护模式下的地址转换
通过采用段地址加偏移量的方式,80386支持的虚拟地址空间可达64T字节。但由于实际物理内存的大小可能会远小于虚拟地址空间,所以实际上虚拟地址中只有部分才可以真正映射到物理存储器。同时由于每一个任务有一个虚拟地址空间。为了避免多个并行任务的多个虚拟地址空间直接映射到同一个物理地址空间,还需要使用线性地址空间来隔离虚拟地址空间和物理地址空间。线性地址空间由一维的线性地址构成,线性地址空间和物理地址空间是对等。线性地址也是32位长,寻址空间为4G字节。
在操作系统中,应用程序使用虚拟地址(也即逻辑地址)访问内存,操作系统将虚拟地址转换为线性地址,然后由处理器将线性地址转换为物理地址,但是在交由处理器转换前,操作系统必须设置处理器所需要的相关描述符表和描述符信息。其实在Linux系统中,这在系统启动时就设置好了,而且是设置后就不会再改动了。
在80386中,通过使用分段管理和分页管理实现虚拟地址到物理地址的转换,其中分页管理是可选的。下图是地址映射转换的示意图。
实模式到保护模式的演变
在微处理器的历史上,第一款微处理器芯片4004是由Intel推出的,那是一个4位的微处理器。在4004之后,intel推出了一款8位处理器8080,它有1个主累加器(寄存器A)和6个次累加器(寄存器B,C,D,E,H和L),几个次累加器可以配对(如组成BC, DE或HL)用来访问16位的内存地址,也就是说8080可访问到64K内的地址空间。另外,那时还没有段的概念,访问内存都要通过绝对地址,因此程序中的地址必须进行硬编码(给出具体地址),而且也难以重定位,这就不难理解为什么当时的软件大都是些可控性弱,结构简陋,数据处理量小的工控程序了。几年后,intel开发出了16位的处理器8086,这个处理器标志着Intel X86王朝的开始,这也是内存寻址的第一次飞跃。之所以说这是一次飞跃,是因为8086处理器引入了一个重要概念—段8086处理器的寻址目标是1M大的内存空间,于是它的地址总线扩展到了20位。但是,一个问题摆在了Intel设计人员面前,虽然地址总线宽度是20位的,但是CPU中“算术逻辑运算单元(ALU)”的宽度,即数据总线却只有16位,也就是可直接加以运算的指针长度是16位的。如何填补这个空隙呢?可能的解决方案有多种,例如,可以像一些8位CPU中那样,增设一些20位的指令专用于地址运算和操作,但是那样又会造成CPU内存结构的不均匀。又例如,当时的PDP-11小型机也是16位的,但是其内存管理单元(MMU)可以将16位的地址映射到24位的地址空间。受此启发,Intel设计了一种在当时看来不失为巧妙的方法,即分段的方法。 为了支持分段,Intel在8086 CPU中设置了四个段寄存器:CS、DS、SS和ES,分别用于可执行代码段、数据段、堆栈段及其他段。每个段寄存器都是16位的,对应于地址总线中的高16位。每条“访内”指令中的内部地址也都是16位的,但是在送上地址总线之前,CPU内部自动地把它与某个段寄存器中的内容相加。因为段寄存器中的内容对应于20位地址总线中的高16位(也就是把段寄存器左移4位),所以相加时实际上是内存总线中的高12位与段寄存器中的16位相加,而低4位保留不变,这样就形成一个20位的实际地址,也就实现了从16位内存地址到20位实际地址的转换,或者叫“映射”。段式内存管理带来了显而易见的优势,程序的地址不再需要硬编码了,调试错误也更容易定位了,更可贵的是支持更大的内存地址。程序员开始获得了自由。技术的发展不会就此止步。intel的80286处理器于1982年问世了,它的地址总线位数增加到了24位,因此可以访问到16M的内存空间。更重要的是从此开始引进了一个全新理念—保护模式。这种模式下内存段的访问受到了限制。访问内存时不能直接从段寄存器中获得段的起始地址了,而需要经过额外转换和检查(从此你不能再随意存取数据段,具体保护和实现我们后面讲述)。为了和过去兼容,80286内存寻址可以有两种方式,一种是先进的保护模式,另一种是老式的8086方式,被成为实模式。系统启动时处理器处于实模式,只能访问1M空间,经过处理可进入保护模式,访问空间扩大到16M,但是要想从保护模式返回到实模式,你只有重新启动机器。还有一个致命的缺陷是80286虽然扩大了访问空间,但是每个段的大小还是64k,程序规模仍受到限制。因此这个先天低能儿注定命不会很久。很快它就被天资卓越的兄弟——80386代替了。80386是一个32位的CPU,也就是它的ALU数据总线是32位的,同时它的地址总线与数据总线宽度一致,也是32位,因此,其寻址能力达到4GB。对于内存来说,似乎是足够了。从理论上说,当数据总线与地址总线宽度一致时,其CPU结构应该简洁明了。但是,80386无法做到这一点。作为X86产品系列的一员,80386必须维持那些段寄存器的存在,还必须支持实模式,同时又要能支持保护模式,这给Intel的设计人员带来很大的挑战。Intel选择了在段寄存器的基础上构筑保护模式,并且保留段寄存器16位。在保护模式下,它的段范围不再受限于64K,可以达到4G。这一下真正解放了软件工程师,他们不必再费尽心思去压缩程序规模,软件功能也因此迅速提升。从8086的16位到80386的32位处理器,这看起来是处理器位数的变化,但实质上是处理器体系结构的变化,从寻址方式上说,就是从“实模式”到“保护模式”的变化。从80386以后,Intel的CPU经历了80486、Pentium、PentiumII、PentiumIII等型号,虽然它们在速度上提高了好几个数量级,功能上也有不少改进,但基本上属于同一种系统结构的改进与加强,而无本质的变化,所以我们把80386以后的处理器统称为IA32(32 Bit Intel Architecture)
The Way of the great learning involves manifesting virtue, renovating the people, and abiding by the highest good.
没有评论:
发表评论