The Way of the great learning involves manifesting virtue, renovating the people, and abiding by the highest good.

2008年12月23日星期二

Math professor discovers chaos on a 'fluid trampoline'

Math professor discovers chaos on a 'fluid trampoline'

December 22nd, 2008 By Anne Trafton in Physics / Physics

Enlarge

A drop of water bounces off a soap film. Image / John Bush/Tristan Gilet

(PhysOrg.com) -- A water drop placed on a soap film that vibrates up and down may bounce as if on a trampoline -- but it's much more than that, according to MIT mathematicians who say the "fluid trampoline" is the simplest fluid example of chaos theory ever explored.

Sponsored Links  (Ads by Google)

Acro Assoc. Pinch Valves - www.acroassociates.com
Solenoid & Pneumatic Pinch Valves For Medical Device & Bioprocessing

MIT math professor John Bush and visiting student Tristan Gilet built the system in the Applied Math Laboratory, then demonstrated that the drop bouncing may be accurately described with a single simple equation. They report their findings in an upcoming issue of Physical Review Letters.

Their study builds upon the pioneering work of the late Edward Lorenz, an MIT meteorologist who in 1963 discovered chaos in a simplified mathematical model of the atmosphere, now called the Lorenz equations. Known as the father of chaos theory, Lorenz passed away in April 2008 after a distinguished career in MIT's Department of Earth, Atmosphere and Planetary Sciences.

The trademark of chaotic systems is their sensitivity to initial conditions. Any uncertainty in the initial state of a chaotic system will soon be amplified, leading to a loss of predictive power over the system. The chaotic nature of the Earth's atmosphere is responsible for the shortcomings of weather forecasts, which are notoriously untrustworthy beyond a few days.

Since Lorenz's early work, chaos has been discovered in a wide variety of complex systems, from the beating heart to population dynamics, from planetary orbits to the stock market. An interesting philosophical question arises, says Bush: "What is the simplest physical system that exhibits chaotic behavior? What are the minimum ingredients for chaos?"

In the 1970s, MIT math professors Lou Howard and Willem Malkus developed the first mechanical chaotic oscillator in the Applied Math Laboratory, a water wheel whose motion is precisely described by the Lorenz equations. The original water wheel consists of a series of perforated Dixie cups fixed to a tilted wheel: When the cups are filled from above, the wheel trajectory may spin in an unpredictable, chaotic
fashion.

Subsequently, chaos has been observed and studied in a number of simple systems, including a bouncing rubber ball, the double pendulum and the dripping faucet. While the latter system is the simplest fluid oscillator to study experimentally, Bush points out that the fluid trampoline is the simplest when one considers both ease of experiment and theory.

The form of bouncing on the fluid trampoline depends on the amplitude and frequency of the soap film vibration. At low amplitude, the drop bounces with the period of the forcing. Progressively increasing the amplitude leads to the bouncing period doubling then quadrupling. Ultimately, chaos emerges via a so-called period-doubling cascade. The authors demonstrate that the trajectory of the bouncing drop is accurately described by a single second-order differential equation that allows them to rationalize all of the observed bouncing behavior, including the period-doubling transitions to chaos.

Their study is the latest milestone in MIT's long association with chaos theory. Says Bush, "We have brought chaos back to its fluid mechanical roots at MIT."

Gilet, a graduate student from the University of Liege in Belgium, was visiting MIT thanks to the financial support of the FNRS/FRIA and the Belgian government.

Provided by MIT

科学: MIT教授在“流体蹦床”上发现混沌

matrix 发表于 2008年12月24日 10时40分 星期三   Printer-friendly   Email story
来自脑子混沌了部门
水滴在肥皂薄膜上会上下振动,就像在蹦床上蹦跳。但MIT数学副教授John Bush称,“流体蹦床”是至今发现的最简单的混沌理论流体范例。John Bush和访问学者Tristan Gilet在应用数学实验室建造了一个系统,然后证明跳动可用单一的方程进行精确描述。他们的报告发表在最新一期的《Physical Review Letters》上。 流体蹦床的跳动模式依赖于肥皂泡沫膜振动的振幅和频率。振幅增加会导致反弹周期翻番至4倍,最终混沌从所谓的周期双倍级联(period-doubling cascade)中浮现。研究人员证明跳动的轨迹可以用一个二阶微分方程描述,并与观察印证,包括过渡到混沌的跳动行为。

混沌学

目录
简介
混沌学的起源和发展
混沌学的应用进展:
相关书籍:

    简介

      混沌学(英文:Chaos) 在科学上,如果一个系统的演变过程对初态非常敏感,人们就称它为混沌系统。研究混沌运动的一门新学科,叫作混沌学。混沌学发现,出现混沌运动这种奇特现象,是由系统内部的非线性因素引起的。

    混沌学的起源和发展

      1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学
      一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。
      与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“ 正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。
      混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用 Pn表示n代后该物种极限数目的百分比,则著名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后, “罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度气压风向度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的 “蝴蝶效应”。
      混沌学的另一个重要特点是,他致力于研究定型的变化,而非日常我们做熟悉的定量。这是由它的成立的目的——解决复杂的,多因素替换成为引起变化的主导因素的系统而决定的。它的基本观点是积累效应和度,即事物总处在平衡状态下的观点。它是与哲学一样,适用面最广的科学
      混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。

    混沌学的应用进展:

      天文学方面:先辈们认清了火星木星间小行星带的Kirkwood间隙起源问题,这些间隙相应于小行星混沌的运行轨道。Laskar给出了行星内部的混沌运动图像,推翻了太阳系稳定的观点。太阳系中地球混沌的特征时间大约是5百万年。
      气象学:Massachusetts理工学院的Edward Lorenz 1963年混沌行为的实验证明使今天的气象学家承认大气的混沌使超过三两周到未来的精确的天气预报成为不可能。但是一些人希望混沌模型最终可使它有可能预报长期的天气趋势。
      生理学BerkeleyCalifornia的Walter Freeman说子利用混沌作为等待状态,他说:人类脑电图(EFG)的研究表明,当一位受试者在接受或处理信息时,脑电波图会变得有序,其余的脑研究者正在通过分析混沌的脑电图的图形寻找预报癫痫发作的方法。
      国际政治学Wayne州立大学为敌对的两个国家之间的军备竞赛编制了一个模型,一个两国都有反导弹防御系统模型实验表明,局势是混沌和不稳定的,最终将导致战争。
      运输:混沌理论最现实应用的奖赏应归于美国一交通工程师小组,他们在1988年华盛顿会议期间把混沌与错综复杂的交通图形联系了起来,下次你被停停走走堵塞在高峰超速公路上,那你就把责任推给混沌。
      艺术上:科学对艺术来说通常没有多大关系,但关于混沌,则却有着某种内在的吸引人的特质,美kaos艺术公司的董事长Kevin说,他支持“艺术或科学上的古怪或不同寻常的努力”。Kaos公司在95年主办了混沌芝家哥艺术节。艺术家和建筑师的反响是热烈的,他们说混沌理论把意义和内容带回到了装饰术中。混沌将有序无序巧妙地结合了起来。95年纽约当代艺术博物馆在纽约举办的“奇怪吸引子:混沌的符号”,在芝家哥举办的“奇怪吸引子:混沌的奇观”轰动美国。

    相关书籍:

      《视读混沌学》 作者:扎奥丁·萨德尔 ISBN:9787539628738 安徽文艺出版社 2007-1-1

    没有评论: